Weighted estimates for operator-valued Fourier multipliers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPERATOR-VALUED Lq → Lp FOURIER MULTIPLIERS

Fourier multiplier theorems provides one of the most important tools in the study of partial differential equations and embedding theorems. They are very often used to establish maximal regularity of elliptic and parabolic differential operator equations. Operator–valued multiplier theorems in Banach–valued function spaces have been discussed extensively in [1, 2, 3, 5, 7, 8, 9, 10, 11, 12 ]. B...

متن کامل

Multipliers in weighted settings and strong convergence of associated operator-valued Fourier series

This note describes the pleasant features that accrue in weighted settings when the partial sums of the operator-valued Fourier series corresponding to a multiplier function ψ : T → C are uniformly bounded in operator norm. This circle of ideas also includes a Tauberiantype condition on the multiplier function ψ sufficient to insure such uniform boundedness of partial sums. These considerations...

متن کامل

Operator-valued Fourier Multipliers in Besov Spaces and Its Applications

In recent years, Fourier multiplier theorems in vector–valued function spaces have found many applications in embedding theorems of abstract function spaces and in theory of differential operator equations, especially in maximal regularity of parabolic and elliptic differential–operator equations. Operator–valued multiplier theorems in Banach–valued function spaces have been discussed extensive...

متن کامل

Multipliers and weighted ∂-estimates

We study estimates for the solution of the equation ∂u = f in one variable. The new ingredient is the use of holomorphic functions with precise growth restrictions in the construction of explicit solutions to the equation.

متن کامل

Random Fourier Features For Operator-Valued Kernels

Devoted to multi-task learning and structured output learning, operator-valued kernels provide a flexible tool to build vector-valued functions in the context of Reproducing Kernel Hilbert Spaces. To scale up these methods, we extend the celebrated Random Fourier Feature methodology to get an approximation of operatorvalued kernels. We propose a general principle for Operator-valued Random Four...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Collectanea Mathematica

سال: 2019

ISSN: 0010-0757,2038-4815

DOI: 10.1007/s13348-019-00275-0